Closing Tue: Webassign Intro
Closing Thur: Supplement 1-3
Supplement 4
Entry Task (Review):
Assume you are given an overall amount graph (such as total distance). In words, write down how you would answer a question that asks you to find...
i) ...overall rate of change at $t=8$.
ii) ...rate of change from $t=3$ to $t=7$.
iii)... a time when the overall rate is 10 miles/min.
iv).... a 5-minute interval when the rate of change is $4 \mathrm{deg} / \mathrm{min}$

Today: Sup. 5 Functional notation.
Get out graph and tables that go with Supplement 5 (pages 4, 5, and 6 of the lecture pack)

Def'n: A function is a rule that produces a single output for every allowable input.

Temp vs time for a chem. reaction

Let $t=$ time (in minutes)
$\mathrm{P}=$ temperature (in ${ }^{\circ} \mathrm{C}$)
$\mathrm{P}(t)=$ "temperature at time t "

For the rest of today, we will practice translating between

1. Functional notation
2. Graphs (values, heights, slopes)
3. English (time, temp, rates)

Very Important Notes:

If $f(t)=$ "height at t ", then
$f(b)-f(a)=$ "change in height from $t=a$ to $t=b "$
$\frac{f(b)-f(a)}{b-a}=$ "slope of the secant line thru $\mathrm{t}=\mathrm{a}$ and $\mathrm{t}=\mathrm{b}$ "
= "incremental ave. rate"
$\frac{f(b)-f(0)}{b-0}=$ "slope of the secant line thru $\mathrm{t}=0$ and $\mathrm{t}=\mathrm{b}$ "
= "overall ave. rate"

$$
\begin{array}{r}
\frac{f(b)}{b}=\frac{f(b)-0}{b-0}=\text { "slope of the } \\
\text { diagonal line thru } t=b \text { " }
\end{array}
$$

Notes:

1. If $f(0)=0$, then the overall average rate is the same as the slope of the diagonal line.
2. $a=$ start of the interval $b=$ end of the interval

Intervals:

Examples:

" h minutes after t ": $\mathrm{t}+\mathrm{h}$ " h minutes before t ": $\mathrm{t}-\mathrm{h}$
"a 2-minute interval starting at t "

$$
\text { start }=t, \quad \text { end }=t+2
$$

"an h-minute interval starting at 3 "

$$
\text { start }=3, \quad \text { end }=3+h
$$

"a 5-minute interval ending at b "

$$
\text { start }=b-5, \text { end }=b
$$

